We have established major differences in the nature and timing of the ontogenetic processes that characterize primate corticogenesis and were the first to identify a human and non-human primate-specific germinal zone: the Outer Sub Ventricular Zone (OSVZ) (Smart et al., 2002) . We have shown that the primate OSVZ includes a high diversity of progenitors including five morphotypes, each characterized by distinct proliferative behaviors. State transition analysis of a large database of lineage trees unexpectedly revealed frequent bidirectional transitions between progenitor types, not observed in other mammalian species (Betizeau et al., Neuron, 2013; Pfeiffer et al., J Comp Neurol, 2016).
We have discovered that primate-specific miRNA signatures uniquely distinguish VZ and OSVZ. Many of these primate-specific miRNAs target cell-cycle genes, indicating that each germinal zone has evolved its own cell-cycle regulation scheme. This suggests the evolution of a complex regulatory control system that may have contributed to the emergence of novel progenitor types interacting through complex lineages. (Arcila et al. Neuron, 2014; Dehay et al., Neuron, 2015)
One of major contributions include discovery of the role of cell-cycle regulation in establishing cortical architecture and cell lineage evolution, via control of cortical progenitor pool amplification and on mode of division (Pilaz et al., PNAS, 2009; Lukaszewicz et al., Neuron, 2005; Dehay and Kennedy, Nat Rev Neurosci, 2007). We have shown that a conserved mechanism, the asymmetrical spindle morphology (SSA) , known to be a core component of ACD in invertebrates is implicated in mammalian corticogenesis where it regulates cell-cycle exit and asymmetric division in apical progenitors of the VZ (Delaunay et al., 2014, Cell Reports, 2014; Delaunay et al., Curr Opin Neurobiol, 2017).
During the last decade, we have established the first line of rhesus ES cells, which we are currently using to generate 3D cortical organoids (Wianny et al., Stem Cells 2008; Stem Cell Res, 2016)
Year | Authors | Title | Journal | PubMed | |
---|---|---|---|---|---|
2020 | Magrou L, Barone P, Markov NT, Scheeren G, Killackey HP, Giroud P, Berland M, Knoblauch K, Dehay C*, Kennedy H*, *co-senior authors | Unique Features of Subcortical Circuits in a Macaque Model of Congenital Blindness | Cereb Cortex | ||
2020 | Ribeiro Gomes AR, Olivier E, Killackey HP, Giroud P, Berland M, Knoblauch K, Dehay C*, Kennedy H*, *co-senior authors, F1000 recommandation | Refinement of the Primate Corticospinal Pathway During Prenatal Development. | Cereb Cortex | ||
2020 | Luanda Lins, Florence Wianny, Colette Dehay, Jacques Jestin, Watson Loh | Adhesive Sponge Based on Supramolecular Dimers Interactions as Scaffolds for Neural Stem Cells | Biomacromolecules | ||
2019 | Arai Y, Cwetsch AW, Coppola E, Cipriani S, Nishihara H, Kanki H, Saillour Y, Freret-Hodara B, Dutriaux A, Okada N, Okano H, Dehay C, Nardelli J, Gressens P, Shimogori T, D'Onofrio G, Pierani A | Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex. | Cell Rep | ||
2019 | Fousse J, Gautier E, Patti D, Dehay C | Developmental changes in interkinetic nuclear migration dynamics with respect to cell-cycle progression in the mouse cerebral cortex ventricular zone. | J Comp Neurol | ||
2018 | Borello U, Kennedy H, Dehay C | The logistics of afferent cortical specification in mice and men | Semin Cell Dev Biol | ||
2018 | Magrou L, Barone P, Markov NT, Killackey HP, Giroud P, Berland M, Knoblauch K, Dehay C*, Kennedy H*, *co-senior authors | How Areal Specification Shapes the Local and Interareal Circuits in a Macaque Model of Congenital Blindness | Cereb Cortex | ||
2018 | Wianny F, Kennedy H, Dehay C | Bridging the Gap between Mechanics and Genetics in Cortical Folding: ECM as a Major Driving Force | Neuron | ||
2018 | Borello U, Berarducci B, Delahaye E, Price DJ, Dehay C | SP8 Transcriptional Regulation of Cyclin D1 During Mouse Early Corticogenesis. | Front Neurosci | ||
2017 | Delaunay D, Kawaguchi A, Dehay C, Matsuzaki F | Division modes and physical asymmetry in cerebral cortex progenitors | Curr Opin Neurobiol |