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Multimodal sensory integration is a ubiquitous neural process that can be modeled as optimal cue 
combination, incorporating both top-down, attention-like signals and bottom-up evidence that impact 
the precision of response variables. Accordingly, reducing attention or adding noise to one modality 
is expected to decrease proportionally its contribution while increasing that of the other modality. We 
tested this prediction using a gender-comparison task employing stimuli for which the face and voice 
were independently morphed between average male and female exemplars. Top-down influences 
were manipulated by having observers judge the stimuli with respect to either one or both modalities. 
Bottom-up influences were manipulated by introducing independent and varying amounts of visual 
and auditory noise. The contributions of each modality were estimated by maximum likelihood 
within a signal detection model of the decision process. As expected, if the attended modality was 
degraded by noise, the contribution of the unattended modality increased in compensation. Contrary 
to prediction, however, noise in the unattended modality had no impact on the attended modality. 
The results signal a departure from an optimal cue combination rule and are relevant to theories of 
predictive processes and observations in bimodal learning in modality-specific agnosia (prosopagnosia, 
phonagnosia).
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Multimodal sensory integration is a ubiquitous feature of brain function1 that is thought to play a predictive 
role in perception2. Categorizing and explaining bottom-up and top-down e�ects is a major issue in the �eld of 
multimodal integration3,4 that can be modeled as multimodal cue combination incorporating both top-down, 
precision or attention-like signals and bottom-up evidence5–7. As a particular instantiation, predictive coding 
models of cognition incorporate focused attention as an internal precision signal8.

Face-voice interactions in perception have provided a particularly fertile paradigm for studying such 
interactions9. For example, e�ects of noise and context have been shown to in�uence the Ventriloquist and 
McGurk E�ects, respectively10,11. While face-voice properties can be varied and integrated in the perception 
of a number of features, such as identity or emotion, gender has proven ideal because it can be de�ned along 
a single perceptual dimension (varying between masculine and feminine), simplifying analyses of responses. 
Technically, it is possible to generate a continuous physical variation between male and female exemplars via 
morphing of auditory and visual stimuli12,13. Previous studies have found that incongruency in the gender of face 
and voice cues can interfere with identi�cation of the voice gender14 or both13. We previously reported a 40-fold 
variation in the relative weights of visual and auditory modalities to judging the gender of audio-visual stimuli 
with independent morphing of the face and voice gender as the top-down demands of the task were varied by 
focusing on the visual, auditory or both modalities15.

In this study, we examine the in�uence of noise, a bottom-up source of variation, on the relative contributions 
of face and voice cues to gender comparisons as the top-down demands are varied, using Maximum Likelihood 
Conjoint Measurement (MLCM)15–18. �e method is based on paired comparisons between stimuli varying 
independently along two or more dimensions, here face and voice gender (Fig. 1a). On each trial, observers 
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readily judge which of the pair is more masculine (or feminine) using the face, voice or both cues conjointly15. 
Pairs are chosen from a large set of stimuli where the apparent gender of the face and voice are independently 
modulated through morphing of combinations of average male and female exemplars. Repeated presentations 
allow estimation of the contributions of each modality to the subject’s judgements19 and the accurate recovery of 
the functions that encoded the stimuli20.

For example, Fig.  1b shows the estimated contributions from each modality to the judgements obtained 
from one subject when the task was to choose the more masculine face. Intuitively, for a �xed gender di�erence 
between the faces of the �rst and second stimuli, if the probability of choosing the �rst face as more masculine is 
una�ected as the voice gender is independently varied, then we can conclude that the voice cues do not in�uence 
the face judgements, and vice versa for voice judgements. On the contrary, if the probability does change, then 
the face judgements are in�uenced by the voice cues. �e contributions of both cues to the judgements that best 
predict the ensemble of judgements are estimated by maximum likelihood within a signal detection model of the 
decision process that occurs on a supramodal gender scale, (Eqs. (1) and (2) in Methods)17. In Fig. 1b, an additive 
model of the cue contributions (Eq. (3)) shows that the face judgements were dominated by a contribution from 
the face (red) with a smaller but signi�cant contribution of the voice (blue). When the task was changed to judge 
the stimuli based on the voice or both modalities, the shape of the face and voice curves remained similar but 
the relative contributions of the two modalities to the judgements covaried systematically (Fig. 1c)15. �us, we 
can assess the relative change in contributions by simply tracking the change in amplitude of each curve across 
tasks (Fig. 1d).

�ese results are best described by a simple cue-combination model (Fig. 1e) where the internal responses 
from the visual and auditory modalities are distributed along a supramodal gender response continuum, varying 
from female to male. �e uncertainty of response from each modality is represented as a distribution along the 
continuum. In the situation depicted, there is a con�ict between the gender of the face (red) and voice (blue) 
stimuli. �e gender is inferred by an optimal combination rule (purple)8,21 under which the distribution with 
higher precision pulls the inferred gender in its direction and is interpreted as a change in weighting induced by 
feedback connectivity (Eqs. (5) and (6)), Fig. 1f).

Fig. 1. MLCM task description, typical results and optimal cue combination model. (a) Conjoint measurement 
protocol. Pairs of face-voice video sequences with independently varying levels of face (3 examples shown on 
the le�) and voice gender morphing were judged by observers according to: (1) face gender, (2) voice gender, 
or (3) stimulus gender. (b) Additive contributions of the face (red) and voice (blue) as a function of gender 
level for each modality when comparing stimuli face gender for one observer. �e points are the estimates 
from a generalized linear model, the curves from a generalized additive model. (c) Average contributions of the 
face (le�) and voice (right) for each of three tasks, replotted from Abbatecola et al.15. (d) �e relative change 
in amplitude of the contribution of face (red) and voice (blue) for each of the three tasks with 95% con�dence 
intervals. (e) Schematic illustration of the distribution of internal responses to face (red) and voice (blue) cues 
and the optimally combined response (purple) for each of the three tasks. (f) Feedback model of combination 
of precision estimates to in�uence weighted cue combinations of gender judgements. Feedback (black arrows) 
in�uences the weights in the contributions of visual and auditory signals in the decision process.
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�is paradigm provides a powerful method to investigate perceptual mechanisms involving the integration 
of top-down and bottom-up signals. �e precision of each distribution can be manipulated in a graded fashion 
by adding noise to one or both modalities. For example, when judging the face, adding visual noise (Fig. 2a) 
increases uncertainty and a change in the top-down precision signal of the face response distribution (Fig. 2b 
right noisy attended modality, black solid curves) but has little e�ect on the voice distribution, resulting in a shi� 
of the inferred distribution toward the unattended voice distribution (dashed curve). If, instead, noise is added 
to the unattended voice modality, the precision of the voice distribution is reduced while the face distribution is 
unchanged, resulting in a shi� of the inferred distribution toward the attended face distribution (Fig. 2b le� noisy 
unattended modality). More generally, according to optimal combination theory5,6, graded addition of noise in 
the attended or unattended modalities is predicted to result in relative changes in the weights attached to each 
modality in opposite directions. Addition of noise to both modalities reduces the weights for both modalities 
(Fig. 2c for an illustration of the model and possible cognitive mechanisms).

Here, we test the hypothesis that top-down, focused attention is exchangeable in its in�uence on bottom-up 
manipulation of precision, i.e., the weighting model where focusing attention to the face has an equivalent e�ect 
to increasing precision in (or removing noise from) the face signal or decreasing precision in (or adding noise 
to) the voice signal. Although, in this model, the in�uences are independent, it is conceivable that they interact. 
If this is the case, what are the experimental conditions that control such an interaction?

To the extent that modality speci�c perceptual de�cits such as prospagnosia and phonagnosia re�ect 
imbalances in the contributions of visual and auditory channels22, our manipulation of bottom-up signal quality 
may reproduce some of the features of this perceptual experience in a general population, leading to a better 
understanding of the compensation mechanisms involved in these de�cits (such as redirecting attention to one 
modality when the other is unreliable) and potential therapeutic strategies.

Results
Simulated observers results
In simulations of the MLCM task, noise in the attended modality (Fig. 3a) reduced the contribution of that 
modality to judgements (shi� from red dashed to solid curve) and increased the contribution of the unattended 
modality (shi� from blue dashed to solid curve) ; the reverse e�ect occurred when adding noise to the unattended 
modality (Fig. 3b, Eq. (7)).

Similar to the e�ect of shi�ing attention, if we assume response curves of invariant shape15, we can model the 
relative change in contributions induced by progressively adding noise in either or both modalities by simply 
tracking the change in amplitude of each curve across tasks. As expected, adding noise to the attended modality, 

Fig. 2. Expected e�ects of noise on MLCM. (a) Example of Face stimuli without (le�) and with (right) 
added noise. (b) Schematic illustration of the distribution of internal responses to face (red) and voice (blue) 
cues when noise is added to the unattended (le�) and attended (right) modality (dashed curve) and without 
noise (purple) on the optimally combined responses for the Face task. (c) Feedback model of combination of 
precision estimates to in�uence weighted cue combinations of gender judgements. Noise (dotted arrows) and 
feedback from attention (black arrows) both in�uence the weights in the contributions of visual and auditory 
signals in the decision process.
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reduced its contribution to judgements with a concomitant increase in the unattended contribution (Fig. 3c). In 
symmetric fashion, adding noise to the unattended modality decreased its contribution to judgements while the 
attended contribution increased (Fig. 3d). Finally, adding noise to both modalities resulted in a similar decrease 
in contribution of both modalities to the judgements (Fig. 3e).

Experimental results
We acquired data across attention and noise conditions in which the attention of the participants could be 
focused on either or both modalities, and noise could be applied to either or both modalities. All noise/attention 
combinations were tested.

�e conventional tool for visualizing raw data from a conjoint measurement experiment is the conjoint 
proportions plot (CPP)16,17,23,24. CPPs de�ne an upper triangular heatmap in which the coordinates of each 
pixel represent a combination of visual and auditory gender levels for a pair of stimuli, i.e., a possible trial. Grey 
levels indicate the proportions of choices the participants made for each trial. Grouped CPPs for each task and 
individual plots can be found in Supplementary section 2. Figure 4 illustrates the results of adding increasing 
amounts of auditory noise (Fig.  4c, d, e, f) and visual noise (Fig.  4c, g, h, i) during the Face task as CPPs, 
compared to simulated ideal observers who made choices simply on the basis of the ordering of the visual (Fig. 
4a) or the auditory gender levels (Fig. 4b).

�e low noise plot (Fig.  4c) resembles most closely the graph for visually based choices (Fig.  4a), as 
expected during the Face task. �e di�erences from the ideal case indicate evidence for contributions of the 
auditory information to the judgements. Adding visual noise progressively modi�es this pattern (Fig.  4g, h, 
i), and responses become more consistent with auditory based choices (Fig. 4b), in line with a compensation 
mechanism during cue combination. Adding varying levels of auditory noise, however, (Fig. 4d, e, f) does not 
seem to produce much change in the results. �e complementary pattern of results is obtained with the auditory 
task with the roles of the visual and auditory noise reversed (Supplementary section 2). �e same trends are 
evident in the CPPs from each individual (Supplementary section 2) except that the data are noisier since based 
on fewer total trials.

�e trends illustrated in the CPP plots are summarized quantitatively in Fig.  5a, b, c, d, e, f, g, h and i, 
which show the average relative change in weight of the contribution of each modality as a function of the task 
(rows) and the modality of the noise (columns). Individual results from which the averages were calculated are 
presented in Supplementary section 3. As in the simulations, when noise is added to the attended modality, 
its weights decreased with noise level and the weights of the non-attended modality increased (Fig. 5a, e). In 
contrast with the simulations, when noise is added to the non-attended modality, its weights decreased and the 
weights of the attended modality were una�ected (Fig. 5b, d). In summary, there was an interaction between 

Fig. 3. Results from simulations (a, b) Model predictions for change of contribution of attended (red) and 
unattended (blue) modalities when adding noise to the attended (a) vs unattended (b) modality (no noise = 
dotted lines vs noise = solid lines). (c, d, e) Model predictions for relative change of contribution of attended 
(red) and unattended (blue) modalities as compared to low noise when progressively adding noise to the 
attended (c) unattended (d) or both modalities (e). Shaded envelopes indicate 95% con�dence intervals over 25 
simulations.
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noise and attention, since no compensation occurred in the attended modality when the noisy modality was 
unattended. �ese results are task dependent, because when the subject was asked to attend to both modalities, 
the contributions of the two channels changed as when the noise was added only to the attended modality 
(Fig. 5g, h). Adding noise to both modalities decreased the contributions of both modalities independently of 
the task (Fig. 5c, f, i).

Discussion
Our results demonstrate an asymmetry in the combination of top-down and bottom-up in�uences in multimodal 
judgements in a gender perception task. When noise is added to an attended modality, its contribution to gender 
judgements decreases systematically with the level of noise while the contribution of the unattended modality 
increases in a contrary fashion. In contrast, when the noise is added to the unattended modality, its contribution 
decreases while the contribution of the attended modality remains una�ected. It seems therefore that attention 
plays a role in excluding signals considered as irrelevant from the usual cue combination weighting process.

One possible explanation for this asymmetry is that the resources allocated to the attended modality are at 
100%, so that while adding noise to the unattended modality decreases its contribution, the attended modality 
is already at its maximum weight. However, control experiments with no noise added (Fig. 1b and c, and our 
previous study15, see Supplementary section 1 for a direct comparison with our lowest noise condition), show 
that even though the task requires judgements on the basis of only one modality, the other modality continues 
to make a signi�cant contribution. �erefore, it seems unlikely that the top-down attentional resources allocated 
to one modality are at maximum value.

We can account for this interaction e�ect by including a conditional factor that nulli�es the noise 
compensation mechanism under certain conditions. �is could be implemented in the brain as a top-down 
signal that, when attention is strongly directed to one modality, precision information from the other modality 
is inhibited. Such an operation makes it impossible to compute the weight of noise compensation (Fig.  5j), 

Fig. 4. Conjoint proportions plots for ideal (a, b) and grouped data (n = 6) for the face task (c, d, e, f, g, h, 
i). �e conjoint proportion plot shows the proportion of responses for choosing one stimulus over another 
for pairs of stimuli with visual v and auditory a gender levels Sva. On each graph, the outer axes indicate 
the visual gender levels i, k and within each grid box, the inner axes represent the auditory gender levels j, l 
corresponding to all possible paired comparison trials between Sij  and Skl. �e pixel grey levels indicate the 
proportion of responses on which the participants on average chose Skl over Sij  based on the instruction 
to choose the stimulus with the most masculine face. (a, b) �e ideal observer graphs indicate the expected 
pattern of results if the choices were made only on the basis of one modality ((a) visual, (b) auditory). (c) 
Participants responses in the low noise condition for both modalities that serves as a control level. (d, e, f) 
Participants responses under increasing auditory noise. (g, h, i) Participants responses under increasing visual 
noise. Empirical plots correspond to the �rst column and row of the �rst graph in Supplementary section 2, 
where the graphs for the other two tasks and for each individual can also be found.
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and the result is a decreased contribution for the noisy unattended modality as a direct e�ect of noise, but no 
compensating increase in the non-noisy strongly attended modality. When both modalities are equally attended, 
the attention threshold for this mechanism is not attained by the information in either modality.

Given the ubiquity of multimodal sensory integration1, these observations are challenging for optimal cue 
combination models5,6,16 and, in particular, theories of predictive coding25,26. Juni et al.27 cite several factors that 
limit ideal cue combination. For example, they note that near optimal cue combination performance is attained 
in naturalistic tasks similar to our face-voice gender comparisons rather than tasks involving cognitive decisions 
and learning. �e gender choice might be seen as a cognitive decision but no learning is involved in our study. 
Also, having the cues simultaneously present as here with the face and voice may aid in optimal combination, 
though the comparisons between stimuli here were successive. Having a large number of cues present may also 
lead to sub-optimal combination because of memory limitations. Our results may depend upon the nature of 
the task since visual cues appear to predominate auditory cues in spatial localization, even when the visual cues 
are severely degraded through blur28.

Our results are also relevant to certain brain disorders such as bimodal learning in prosopagnosia and 
phonagnosia. For example, contrary to control subjects, voice recognition in prosopagnosics does not bene�t 
from bimodal learning (reviewed by Maguinness and von Kriegstein22). Under the assumption that channels 
processing face information in prosopagnosics behave similarly to an unattended modality, the relevant auditory 
modality does not compensate for a decrease in signal from the irrelevant visual modality. In contrast, voice 
recognition in phonagnosics does bene�t from bimodal learning. Even though they experience di�culty 
in recognizing voices, when phonagnosics attend to voices, information from the visual channel aids in 
compensating for their de�cit. Given the pattern of results in our data, these observations lead to the prediction 
that face recognition in prospagnosics would bene�t from auditory information, but that face recognition in 
phonagnosics would not bene�t from voice information.

Two particularities of our work compared to other cue combination studies are that subjects were instructed 
to attend to either one or both modalities, thus selectively in�uencing the precision from one or both channels, 
and that noise was added in varying amounts to both modalities. Under these conditions, our results demonstrate 
violations of optimal (Bayesian) inference in multimodal cue combination.

Recently, Smeets and Brenner29 advanced a framework to explain task dependent inconsistent judgements 
about object properties, for example, arising from local versus global cues in a visual illusion for which a Bayesian 
analysis of the parts would lead to a non-Bayesian perception of the whole object. �us, this violates the view of 
a Bayesian observer as someone “who, vaguely expecting a horse and catching a glimpse of a donkey, strongly 

Fig. 5. Experimental results. (a, b, c, d, e, f, g, h, i) Average relative change of contributions of visual (red) and 
auditory (blue) modalities as compared to lowest bimodal noise condition when progressively adding noise to 
the visual (le� column), auditory (middle column) or both modalities (right column), while participants were 
performing the face task (top row), voice task (middle row) or stimulus task (bottom row). Each panel shows 
the average of 6 observers. Error bars display 95% con�dence intervals. �e numbers at the top of each plot 
indicate combinations of visual and auditory noise as referenced in Table 1. (j) Feedback model of combination 
of precision estimates to in�uence weighted cue combinations of gender judgements. Feedback from attention 
(black arrows) and noise (dotted arrows) both in�uence the weights in the contributions of visual and auditory 
signals in the decision process. �ere is additionally an inhibitory signal conditional on attention (dotted black 
arrows) when attention is strongly focused on one modality, negating noise weighting from the other modality.
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concludes he has seen a mule”30. Instead, Smeets and Brenner propose that overall consistency is not necessarily 
the criterion employed in perceptual processing, despite our beliefs that the laws of physics should be consistent. 
Rather, they suggest that we perceive a series of answers to sequential and speci�c questions related to the task at 
hand, and these answers need not be consistent with one another. In the present study, the inconsistency arises as 
a lack of trade-o� between the e�ects of bottom-up noise and top-down attention on precision in the judgements 
of multi-modal combinations of gender cues, as required by optimal cue combination.

Methods
Procedure
Eighteen individuals (9 male) with normal or corrected-to-normal vision volunteered for the experiment (mean 
age +/- SD = 25.7 +/- 3.4 years). Each participant was randomly assigned to one of the three experimental 
conditions so that there were 3 male and 3 female observers per condition. All observers were naive, right-
handed and native French speakers. All observers had normal (or corrected to normal) vision as assessed by 
the Freiburg Visual Acuity and Contrast Test (FrACT)31, and normal color vision as assessed by the Farnsworth 
F2 plate observed under daylight �uorescent illumination (Naval Submarine Medical Research Laboratory, 
Groton, CT, USA). Normality of face perception was assessed by the Cambridge Face Memory Test (CFMT)32. 
All observers gave informed consent and were compensated for their participation. All studies were approved 
by the Comité de Protection des Personnes Sud-Est III Groupement Hospitalier Est, Hôpital Civil de Lyon Bron, 
France and conducted in agreement with the Declaration of Helsinki for the protection of human subjects.

Experiments were performed in a dark room and stimuli displayed on an Eizo FlexScan T562-T color 
monitor (42 cm) driven by a Power Mac G5 (3gHz) with screen resolution 832 × 624 pixels and run at a �eld 
rate of 120 Hz, noninterlaced. Calibration of the screen was performed with a Minolta CS-100 Chromameter. 
Observers were placed at a distance of 57.3 cm from the screen, and head stabilization was obtained with a 
chin and forehead rest. Auditory stimuli were presented through headphones (Sennheiser HD 449), which also 
served to mask any ambient noise. Sound calibration was performed with a Quest QE4170 microphone and a 
SoundPro SE/DL sound level meter.

�e stimulus set, obtained from Watson et al.13 and used in our previous study15, consisted of video clips of 
the face of a person saying the phoneme “had”, whose face and voice gender varied by morphing from feminine 
to masculine (18 levels of morphing for the face from 0.1 to 0.95 and 19 levels for the voice from 0.05 to 0.95). 
�e endpoint faces/voices were obtained from averages of 10 male and female faces. From these we selected 4 
levels of face gender morphing (0.1, 0.35, 0.65 and 0.95), and 4 levels of voice gender morphing (0.05, 0.35, 0.65 
and 0.95) to obtain a 4 × 4 stimulus set (yielding 120 unique face-voice pairs). �ese levels are equally spaced on 
the gender morphing axis and generate a sparser sample of the curves obtained in Abbatecola et al. (2021)15 (see 
Fig. 1b). �e levels conform to the requirement for MLCM that the levels be easily ordered by a participant17. 
�is corresponds to 150 trials for each noise condition, which should yield results with an equivalent level of 
accuracy from our previous paradigm (in which we used a 18 × 19 set, also with 1500 trials) according to 
a power simulation based on preliminary data for this project (see Abbatecola et al. (2021)15 Supplementary 
section 1, Figure S2). �e clips were converted to greyscale and matched for average luminance. An oval mask 
�tted around each face hid non-facial gender cues, such as the hair and the hairline.

�e so�ware PsychoPy333 (https://www.psychopy.org) was used to control stimulus presentation. Stimuli 
were displayed in the center of a grey background (31.2 cd/m2, CIE xy = (0.306, 0.33)). Face luminance varied 
between 29.7 cd/m2 (CIE xy = (0.306, 0.324)) for the eyes and 51.6 cd/m2(CIE xy = (0.303, 0.326)) for the nose. 
Face diameter was �xed at 10 degrees of visual angle and voice volume between 85.2 and 86.7 dB SPL (A) - Peak.

Each observer performed 1500 trials allocated over 5 sessions of 300 trials each, randomly distributed among 
10 noise conditions that combined di�erent levels of visual and auditory noise, as indicated in Table 1. Visual 
noise was composed of white noise superimposed on top of the video images, obtained by randomizing the 
luminance of the image pixels. For the auditory noise, a random pink auditory noise was played during the 
audio. We de�ned 4 noise levels in the visual and auditory dimensions roughly equally spaced subjectively from 
being barely noticeable (10%) to rendering the stimuli unrecognizable (90%). We used pink rather than white 
noise for the auditory channel because high levels of white noise were perceived to be uncomfortably loud, and 
pink noise is more e�cient at masking the human voice34. �e 10% noise condition di�ered trivially from a 

%Auditory 
noise

%Visual noise 10 50 75 90

10 1 2 3 4

50 5 6

75 7 8

90 9 10

Table 1. Combinations of visual and auditory noise used in the experiments. Percentages are the proportion 

of noise in the visual/auditory input in terms of contrast/volume (e.g., for an auditory noise level of 25% the 

volume of the voice was reduced from 90 to 75% and the volume of the noise increased from 10 to 25%). �ere 

were 150 trials for each noise condition. Conditions used in the experiment are indicated by a number that 

references the corresponding levels in the panels a-i of Fig. 5.

 

Scientific Reports |        (2025) 15:25742 7| https://doi.org/10.1038/s41598-025-09542-6

www.nature.com/scientificreports/

https://www.psychopy.org
http://www.nature.com/scientificreports


no-noise condition reported previously15 (Supplementary section 1). We observed no evidence in our results to 
suggest that the e�ects on performance di�ered for the visual compared to the auditory noise.

Within the gender equality constraints speci�ed above, participants were randomly assigned to one of three 
groups that di�ered only with respect to instructions to judge the video clips according to either the gender of 
the face, the gender of the voice or the gender of the stimulus (i.e., participants in this group were encouraged 
to use information from both modalities). We know from previous MLCM literature19, including with the same 
stimulus set15 that when instructed in this way participants are able to bias their attention to a particular stimulus 
feature.

On each trial two stimuli were randomly selected with the gender morphing scale values of the voice and 
face independently and randomly assigned and successively presented. �e duration of each stimulus was �xed 
at 500ms with a minimum 500ms inter-stimulus interval between each pair. A�er the presentation, observers 
judged which stimulus (face, voice or stimulus, according to their assigned group) appeared more masculine. 
�e next pair was presented following the observer’s response via a button press using a Logitech gamepad f310.

Quantification and statistical analysis
Fitting MLCM
Curve �tting, simulation and statistical analyses were performed with R35 (https://www.r-project.org) using the 
MLCM36 (https://cran .r-project.o rg/web/packa ges/MLCM/in dex.html) and lme437  ( h t    t p  s  : / /  c r  a  n . r -  p r  o j  e  c t . o r g / 
w e b / p a c k a g e s / l m e 4 / i n d e x . h t m l ) packages. We summarize the MLCM signal detection model here that has been 
described in detail elsewhere16,17.

For each trial, two non-identical items were randomly sampled from the set of visuo-auditory stimuli ordered 
along the face and voice gender physical continua (ordered by relative morphing between extreme gender 
examplars). Given a trial with the pair of physical gender levels S1 = (φV

1 , φA
1 ) and S2 = (φV

2 , φA
2 ), using 

V and A superscripts to signify visual and auditory components, respectively, we suppose that the two stimuli 
generate internal gender representations determined by a psychophysical function, ψ. For a single trial, the noisy 
gender comparison process can be modeled as:

 ∆i(S1, S2) = ψ1 − ψ2 + ϵ = ψ(ϕV

1 , ϕ
A

1 ) − ψ(ϕV

2 , ϕ
A

2 ) + ϵ = δi + ϵ, (1)

where ψ1 and ψ2 are internal representations for the gender of the �rst and second stimuli, respectively, 
determined by the psychophysical function, ϵ is a Gaussian random variable with mean µ = 0 and variance σ2 
corresponding to judgement noise that accounts for random variation of observer responses when presented 
with the same stimulus pair , and ∆i is the decision variable on the ith trial.

We assume that the observer chooses the �rst stimulus when ∆i > 0, and otherwise the second. We code 
the observer’s responses, R, by 1 or 0 depending on whether the choice is stimulus 1 or 2. �is is a Bernoulli 
distributed random variable, and the log-likelihood, ℓ, of the model over all trials given the observer’s responses 
is:

 

ℓ(∆i, Ri) =
∑

i

Ri · log
(

Φ
(

δi

σ

))

+ (1 − Ri) · log
(

1 − Φ
(

δi

σ

))

, (2)

where Ri is the response on the ith trial and Φ is the cumulative distribution function for a standard normal 
variable. In all cases, the psychophysical scale values were estimated by maximizing the likelihood of the observers’ 
choices across all trials. �e estimated scale is unique only up to addition of a constant and/or multiplication by 
a scalor , thus requiring constraints to be imposed on the estimated values to render the model identi�able15,17. 
Here, we �xed the values of ψ to 0 at the most feminine values of the face and voice scales and parameterized σ 
so it corresponds to the unit along the perceptual scales. For this reason, we designated the ordinates in Figs. 1b 
and c and Fig. 3a and b as d′17.

MLCM studies usually consider three nested models (independent, additive and interaction), which can 
be compared using likelihood ratio tests. In our case, following previous results with the same stimulus set 
and a comparable paradigm15, we know that the independent model is not adequate, and we have previously 
determined that relevant interaction e�ects are small. We, therefore, focused on the additive model, under which 
we de�ne the decision variable as a sum of the di�erences between the visual and auditory gender signals. Here 
the internal response to stimulus 1 is modeled as:

 ψ(φV

1 , φ
A

1 ) = ψ
V

1 f(φV

1 ) + ψ
A

1 g(φA

1 ), (3)

where ψV

1  and ψA

1  are parameters representing internal gender responses evoked by the visual cue φV

1  and the 
auditory cue φA

1  from stimulus 117. �e decision variable of the �rst versus the second stimulus for each trial can 
then be derived using Eq. (1).

Our previous results with this stimulus set15 allowed us to further parameterize the form of the scale of 
responses for each modality (Fig. 1c). Speci�cally, the voice contribution with respect to gender level was well 
described by a linear function of gender morphing (with slope varying across attentional task). Similarly, the face 
contribution was well described by a quadratic function (with coe�cient varying across attentional task). In the 
earlier study, we re�tted the MLCM models to the observers’ choices with these �xed curves using a Generalized 
Linear Mixed-E�ects Model36 with participants as a random e�ect and the internal responses to an individual 
stimulus modeled as a linear predictor.
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 ψ(φV
, φ

A) = ψ
V

· (φV )2 + ψ
A

· φ
A

, (4)

where ψV  and ψA are parameters estimated for face and voice gender levels φV  and φA.
�is parametrization allowed us to reduce the number of parameters necessary to estimate each model, as 

well as to model the e�ect of attention as a weighting factor15 for each modality. �e latter was done by �tting 
the model to the “Stimulus” condition (i.e.,where attention was not speci�cally directed to either modality), 
then allowing the two parameters to vary to account for data from the modality-speci�c attentional conditions 
(see Fig. 1d for an illustration of the resulting weights). �e resulting internal response model for each bimodal 
stimulus is described as:

 ψ(φV
, φ

A) = w
V

att · ψ
V

· (φV )2 + w
A

att · ψ
A

· φ
A

, (5)

where wV

att and wA

att, constrained to fall between 0 and 1, indicate the weights attributed to attention in the 
visual and auditory modalities, respectively, in a given condition with wV

att = 1 − w
A
att (Fig.  1f). Analyzing 

the e�ects of visual and auditory noise is performed in the same way by �tting an initial model to the condition 
with the least amount of noise bimodally, then estimating the relative change of weights in all of the other noise 
conditions.

Combining both attention and noise weighting, we obtain the internal response model used in our analysis 
(Fig. 5a, b, c, d, e, f, g, h, i):

 ψ(φV
, φ

A) = w
V

att/noi · ψ
V

· (φV )2 + w
A

att/noi · ψ
A

· φ
A

, (6)

where wV

att/noi and wA

att/noi are the weights corresponding to a particular combination of attention and noise 

level in the two modalities.

Simulated observer
We also applied the same analysis on simulated data to compare to the results of our actual participants (Fig. 3a, 
b, c, d). In the simulations, we chose attentional weights that roughly matched our previous empirical values15: 
0.6 for the attended modality, 0.4 for the unattended, 0.5 for both modalities in the stimulus task.

Concerning the e�ect of noise, for optimal cue combination across modalities, under reasonable constraints 
we de�ne weights for each modality as5,6:

 
w

V

noi =
σ

−2

V

σ
−2

V
+ σ

−2

A

; w
A

noi =
σ

−2

A

σ
−2

V
+ σ

−2

A

, (7)

where σ−2

V
 and σ−2

A
 represent signal precision in the visual and auditory modalities in a given trial.

We created a dataset composed of all empirical trials across participants, for which we determined a simulated 
response using the formula:

 

∆sim = δ
V

sim + δ
A

sim + ϵ

δ
V

sim(ϕV

1 , ϕ
V

2 ) = w
V

att · w
V

noi ·

[

ϕ
V

1 − ϕ
V

2 + ϵ
V

]

δ
A

sim(ϕA

1 , ϕ
A

2 ) = w
A

att · w
A

noi ·

[

ϕ
A

1 − ϕ
A

2 + ϵ
A

]

,

 (8)

where ∆sim is the decision variable, δV

sim and δA

sim are simulated perceived di�erences in the visual and auditory 
modalities, attentional and noise weighting are determined depending on the trial, ϵV  and ϵA are Gaussian 
random variables with mean µ = 0 and variance depending on the level of noise in the corresponding modality. 
�e noisy decision rule is the same as used in �tting the empirical data.

Data availability
Source data for the �gures in this paper are archived at https://github.com/ClementAbb/FV_noise_attention, 
Supplementary �gures in a pdf �le and the raw data are available as a supplementary text �le.
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