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Besides conventional perceptual attributes of hue, brightness, and saturation, colors are universally classified along
a warm/cool dimension. Previous estimates of how warm/cool values are distributed across color space have relied
on subjective ratings. Here we employed simple ordinal judgments between stimulus pairs using maximum like-
lihood conjoint measurement (MLCM) to assess the influence of Munsell hue, value, and chroma on warm/cool
judgments. We also evaluated an identification task for single stimulus presentations. For the MLCM procedure,
observers judged on each trial which of the two stimuli appeared warmer. For the identification task, observers clas-
sified individually presented color patches as cool or warm. The judgments were analyzed with probit regression to
estimate the underlying perceptual scale values. The results confirm that the contributions of different dimensions
to warm/cool variations in color space can be estimated using only ordinal judgments. While for most observers,
warm/cool judgments depended on hue, there were individual variations in the extent to which value contributed
to warm/cool, and little evidence for an effect of chroma. © 2025 Optica Publishing Group. All rights, including for text

and datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Color appearance is conventionally defined using the perceptual
attributes of hue, brightness, and saturation. Nevertheless,
color is often additionally described by various attributes using
opposing semantic words such as “soft–hard,” “clean–dirty,”
“light–dark,” etc. These attributes are thought to reflect the
impact of affective or cognitive aspects of color, frequently
in the description of art. A prominent example of one such
dimension of color experience is based on warm/cool classifi-
cations. Warmness is generally attributed to red-orange hues or
long-wavelength lights, while coolness with green-blue hues or
short-wavelength lights [1].

This distinction is generally considered as a dimension of
color appearance [1,2] and has been found to be culturally inde-
pendent [3–5]. Studies on emotion have evoked the warm/cool
distinction as one of the essential dimensions to define a single-
color patch [4,6], and this dichotomy appears prominently
when naïve observers rate colors on affective scales [7].

The origin of the warm/cool distinction and of its neural rep-
resentation remains uncertain, however [8,9]. One hypothesis
is that this classification is based on a cognitive process [10].
For example, an early stage of color lexicon evolution is defined
by a two-term color naming system, as in the Dani language

[11]. The two-term system constitutes a coarse division of color
grouping that is marked by the non-basic, non-color-specific
terms “warm” and “cool.” This was shown by a concordance
analysis of the World Color Survey indicating two major fault
lines that reflect the psychological distinction between the
categories warm and cool [3].

Alternatively, the warm/cool dichotomy might be related to
fundamental visual mechanisms involved in sensory coding. In
two separate experiments, Katra et al. [12] asked observers to
rate NCS-specified color chips varying in hue, saturation, and
lightness, along with lightness/darkness and warm/cool dimen-
sions, respectively. Warm ratings increased somewhat when the
percentage of saturation increased but did not change with the
amount of lightness. They also demonstrated a relation between
a weighted sum of the activation of opponent-color channels
as defined by hue cancellation experiments and the warm/cool
ratings. These results support that the warm/cool distinction
is also constrained, at least to some extent, by sensory coding
[13]. This raises the possibility that the warm/cool dimension
may arise as a combination of sensory coding and cognitive
constructs.

Most previous measurements of warm/cool values across
color space relied on subjective ratings [12,14–16]. An
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important exception is the recent study of Koenderink et al.
[17], who used ordinal judgments of stimulus pairs of adjacent
hues on a color circle to make relative warm/cool judgments. We
have previously shown that ordinal judgments of stimulus pairs
using maximum likelihood conjoint measurement (MLCM)
[18,19] suffice to measure hue responses reliably and generate
results that agree well with subjective rating methods, thus
circumventing some of the issues often raised with direct scaling
methods [20]. This method is typically used to estimate percep-
tual scales associated with the integration of information along
multiple dimensions [21,22]. Here we used MLCM to assess the
influence of Munsell hue, value (lightness), and chroma (satura-
tion) on warm/cool judgments, initially employing a three-way
design and subsequently a two-way design when one of the
stimulus dimensions was found to influence the judgments
negligibly.

Another advantage of this method is that the stimulus factors
influencing the ordinal judgments between stimulus pairs can
be modeled within a signal detection framework [19,23]. A
drawback of the MLCM approach in the current experiments
is that it only allowed the estimation of the relative shape of the
warm/cool psychological response. To address this deficiency,
we also employed an identification task for single stimulus pre-
sentations. As the experimental design required a large number
of models to be evaluated, an information criterion was used in
each experiment for model selection instead of multiple testing
of nested models that could have increased bias from Type I
error [24].

2. GENERAL METHODS

A. Observers

A total of 18 observers were tested in the experiments and only
one (an author) completed the full set of conditions. All observ-
ers except the author remained naïve over the course of the
experiments. Each observer returned for several sessions to com-
plete the conditions in which he or she participated. We tested
four participants for each MLCM task and 12 participants for
the identification task. Ages ranged from 20 to 49 years. All
observers had normal color vision as assessed by a Farnsworth
Panel D15 and had normal or corrected-to-normal visual acuity.
All experiments were performed in accordance with the princi-
ples of the Declaration of Helsinki for the protection of human
subjects.

B. Apparatus

The stimuli were presented on a NEC MultiSync FP2141sb
color CRT monitor driven by a Cambridge Research ViSaGe
graphic board with a color resolution of 14 bits per gun
(Cambridge Research Systems, Rochester, United Kingdom).
The monitor had a diagonal screen size of 22 in., a resolution
of 1024 × 768 pixels, and a refresh rate of 120 Hz. The screen
was calibrated using a SpectroCal spectroradiometer with the
calibration routines of Cambridge Research Systems. The exper-
imental software was written to generate all stimuli, execute the
experimental procedures, and collect responses in MATLAB
7.9 (MathWorks [25]), using the CRS Toolbox extensions
(Cambridge Research Systems, Rochester, United Kingdom).

A Cedrus RB540 response pad was used to collect observer
responses (Cedrus Corporation; San Pedro, CA, USA). The
observer position was stabilized by a chinrest so that the screen
was viewed binocularly at a distance of 80 cm. Experiments were
performed in a dark room.

C. Stimuli

Each stimulus was defined by a circular disk of 4◦ diameter. The
same spatial pattern was used for the MLCM and for the iden-
tification task. All stimuli were displayed on a gray background
with fixed chromaticity coordinates (CIE x , y = 0.3128,

0.3289; Y = 49.68 cd/m2).
Stimuli were specified in the Munsell system and then trans-

lated to coordinates into CIE x y Y using the open-source
software R [26] and the munsellinterpol package [27]. The
main step was to specify our stimuli in the Munsell system using
color chips from 5R to 10 RP. To that end, stimuli were defined
from chromaticity coordinates in CIE Lab color space and
monitor RGB values using the CRS Color Toolbox extensions
(Cambridge Research Systems, Rochester, United Kingdom)
to present them on the screen. Then, we adjusted these chro-
maticity coordinates to obtain the Munsell chip specifications
using functions from the munsellinterpol package. The pack-
age functions automatically interpolate the Munsell notations
to provide fractional levels of chroma and value that do not
correspond to actual Munsell chips.

For the three-way MLCM experiment, 20 evenly spaced
levels of hue with two levels of value and two of chroma were
pre-selected. Because of gamut limitations, in the first experi-
ment, value and chroma were equated in the low- and high-level
conditions for all hues except for four in the high chroma con-
dition (5B, 5PB, 10PB, and 5P). Chroma and value, however,
were not equated across hue. The Munsell coordinates along
with Lab values for the first experiment are shown in Table 1.
In the second experiment using a two-way MLCM design, the
same 20 levels of hue were used with two levels of value (7.5 and
5.4) and chroma was held constant at a level of 7.

D. Procedure

Each observer completed the experimental sessions over several
days. The observers were adapted to the screen for 3 min at the
beginning of each session. There was a practice session of five
trials, followed by the experimental session if the observer felt
comfortable with the task; otherwise, additional practice trials
were run. No feedback was provided during any part of the
experiment.

1. MaximumLikelihoodConjointMeasurement Task

In the three-way MLCM experiment, the 20 hues × 2 values ×

2 chromas design, generated 80 stimuli. On each trial, two
different stimuli were chosen randomly from the 80-element
grid, resulting in a total of (80 × 79)/2 = 3160 possible, non-
identical pairs. The observers were tested over six sessions of 125
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Table 1. Munsell and CIE Lab Values for the 80 Colors Used in the Three-Way MLCM

High Saturation (High Lightness/Low Lightness) Low Saturation (High Lightness/Low Lightness)

Hue
Value

(cd/m2) Chroma a∗ b∗

Value
(cd/m2) Chroma a∗ b∗

5R 5.4/4.1
(22.37/13.19)

14.2/14.2 70.03/56.97 38.99/30.24 5.4/4.1
(21.68/13.14)

12.2/12.2 50.03/51.11 27.55/27.12

10R 5.9/4.1
(29.64/14.24)

13.4/13.4 54.17/48.65 66.02/54.68 5.9/4.1
(32.35/14.98)

10.9/10.9 38.68/40.8 41.86/41.62

5YR 6.9/5
(48.65/24.31)

13.4/13.4 32.86/28.57 77.6/61.64 6.9/5
(52.25/24.88)

9.9/9.9 24.36/25.78 51.24/52.1

10YR 7.4/5.1
(62.56/27.27)

9.7/9.7 14.18/12.7 81.04/61.6 7.4/5.1
(66.25/27.79)

7.5/7.5 8.48/10.52 47.52/47.89

5Y 7.2/5.2
(62.42/29.95)

9/9 −2.72/−0.4 70.93/62.26 7.2/5.2
(64.17/30.02)

5.6/5.6 −3.28/−1.22 40.31/40.58

10Y 7.5/5.2
(70.92/30.98)

10/10 −15.84/−12.07 80/61.68 7.5/5.2
(71.76/30.98)

7.3/7.3 −12.63/−11.25 52.97/53.11

5GY 7.2/5.3
(67.47/33.90)

10/10 −33.89/−27.95 77.8/60.63 7.2/5.3
(67.64/33.33)

6.7/6.7 −21.45/−21.46 42.51/41.79

10GY 7.2/5.3
(67.78/34.51)

10/10 −54.64/−47.08 48.84/40.54 7.2/5.3
(67.98/33.97)

6.7/6.7 −31.74/−31.4 27.74/26.46

5G 7.2/5.3
(67.48/33.80)

9.8/9.8 −51.43/−40.42 17.04/12.9 7.2/5.3
(68.30/33.63)

6.8/6.8 −35.98/−35.62 12.71/11.64

10G 7.5/5.3
(71.46/33.27)

7.4/7.4 −38.88/−35.55 5.37/3.77 7.5/5.3
(71.39/32.25)

5.4/5.4 −23.97/−23.1 3.66/2.74

5BG 7.5/5.5
(71.64/35.34)

9/9 −44.05/−33.67 −4.68/−5.44 7.5/5.5
(71.85/35.33)

5.6/5.6 −27.96/−26.97 −2.54/−4.18

10BG 7.5/5.4
(70.08/32.99)

7/7 −31.78/−33.67 −13.51/−15.11 7.5/5.4
(70.26/32.96)

5.3/5.3 −19/−17.63 −7.72/−8.99

5B 7.1/5.2
(58.71/29.17)

9/9 −27.84/−21.53 −30.05/−25.88 7.1/5.2
(60.14/29.45)

6.8/6.8 −20.46/−18.86 −20.54/−22.03

10B 6.7/4.8
(49.09/22.77)

10/10 −13.35/−11.61 −35.61/−38.85 6.7/4.8
(51.16/23.87)

7.2/7.2 −10.68/−9.02 −26.16/−27.56

5PB 6.4/4.6
(40.60/18.17)

10/10 2.26/5.82 −39.62/−48.18 6.4/4.6
(43.72/20.79)

7.6/7.6 1.34/2.83 −29.56/−30.89

10PB 6.4/4.6
(39.82/16.45)

11/11 22.06/36.11 −40/−53.32 6.4/4.6
(42.40/18.91)

7.5/7.5 13.91/16.52 −27.19/−28.47

5P 6.4/4.6
(36.67/16.06)

13.8/13.8 42.05/49.31 −40.7/−43.32 6.4/4.6
(40.38/19.06)

9.1/9.1 26.57/29.02 −26.66/−27.26

10P 6.4/4.6
(35.14/16.45)

14/14 64.43/53.45 −31.87/−27.6 6.4/4.6
(36.68/17.32)

12.3/12.3 45.25/47.2 −22.22/−24.29

5RP 5.8/4.1
(25.78/13.26)

12.5/12.5 68.95/53.28 −7.83/−8.19 5.8/4.1
(30.87/14.24)

10.7/10.7 43.21/45.74 −4.02/−6.72

10RP 5.6/4.1
(24.36/12.63)

12.4/12.4 69.32/54.43 13.05/8.04 5.6/4.1
(27.88/13.14)

11.8/11.8 49.48/51.91 10.11/7.82

trials, yielding a total of 750 trials per observer (23.73% random

sampling with replacement from the total of all possible pairs).

A two-way MLCM experiment was also performed varying

hue and value dimensions with chroma fixed. In each trial, a pair

of different stimuli from the 2 × 20 grid was chosen at random

and presented to the observer. There are (40 × 39)/2 = 780

such non-identical pairs. For each observer, all 780 pairs were

presented in random order over six sessions of 130 trials each.

For both MLCM experiments, two stimuli were presented,

and the observers were instructed to judge which of the two

appeared warmer. An inter-stimulus interval between each

pair was fixed at 500 ms. Responses were recorded as right or

left button presses. The next pair was presented following the
observer’s button press response.

2. Identification Task

The observers classified individually presented color patches as
warm or cool. The dimensions varied were hue and value with
chroma fixed as in the two-way MLCM. Each stimulus was pre-
sented 18 times for each condition and tested in random order.
Six sessions consisting of 120 trials each were run for a total
of 720 trials (20 hues × 2 values × 18 repetitions). On each
trial, a color patch was presented in the center of the screen, and
the subsequent trial was activated by pressing the appropriate
button. At its offset, a blank screen appeared for 500 ms.
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Fig. 1. All possible model terms and their marginality relations.
For a given term, the tree of arrows emanating from it indicates the
marginal terms that must be retained for nested model comparisons.
For example, a model including the hue:value interaction must also
include the hue and value main effects terms. The “:” between dimen-
sion names indicates an interaction. The null model corresponds to a
model in which the observer responses are independent of any of the
dimensions.

E. Data Analyses

All analyses were performed using the open-source software R

[26] with functions from the MLCM package [28]. In analyzing

the data from an MLCM experiment with n dimensions, there

are 2n possible models (including the null model in which the

observer’s choices are independent of all dimensions) since

each term in the model can be included or excluded. Among

these, the nested model comparisons are between pairs for

which the terms of one of the models are a proper subset of the

other. A simple counting argument leads to the result that for n

dimensions there are

n−1
∑

k=0

(

n
k

)

(2n−k
− 1)

possible models that conserve the marginality of lower-order
terms. These are the models that can be used in nested com-
parisons with adjacent models, i.e., that make comparisons to
models that eliminate just the highest-order terms(s). While for
two dimensions, five such nested models are possible, for three
the number grows to 19. Figure 1 shows the marginal relations
of the terms of the three-way model. To avoid performing multi-
ple statistical tests that can lead to an increase in Type 1 error,
all possible models were fit (five in the case of two-way MLCM
and 19 for three-way MLCM), and the best model was chosen as
the one that minimized the Akaike information criterion (AIC)
[29]. The AIC is defined as minus twice the log-likelihood plus
twice the number of free parameters estimated in the fit so that
models with too many parameters are penalized at the expense
of goodness of fit. This procedure, however, selects a model that
minimizes prediction error [30].

3. RESULTS

A. Results of Three-Way MLCM (Hue, Value, and

Chroma)

Data were analyzed as a decision process within the frame-
work of a signal detection model and fitted by maximum
likelihood, as described elsewhere [17,18]. Results indicated
that the minimum AIC models were “H + V” for Observer
1, “H + V + C + H:V + C:V” for Observer 2, “H + V” for
Observer 3, and “H + V + C” for Observer 4. The models
vary among observers, but all include both hue and value main
effects. Observers 1 and 3 show additive main effects of hue and
value, so the value does not change the relative contribution
across hue, i.e., it only causes a constant vertical shift across hue
(see Fig. 2). For Observer 4, the main effect of chroma also does

Fig. 2. Estimated scale obtained for the three-way MLCM procedure (hue, value, and chroma). Each panel shows the average estimates for warm
versus cool responses as a function of the hue in Munsell color space. The two curves for Observer 2 indicate the change of shape of the hue curve with
value due to the interaction of these two stimulus features. The solid line corresponds to the lower level of value and the dashed to the higher.
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Fig. 3. Estimated scale obtained for the two-way MLCM procedure (hue and value). The solid curves show the average estimated scales under the
additive model for each observer. The dashed lines for Observers 6 and 7 indicate the estimated interaction of value on the shape of the hue curve. The
values on the abscissa indicate the hue values as displayed along the Munsell color system. The two curves for Observers 6 and 7 indicate the change
of shape of the hue curve with value due to the interaction of these two stimulus features. The solid line corresponds to the lower level of value and the
dashed to the higher.

not change the relative contribution across hue. Only Observer
2 shows an interaction between hue and value, indicating that
the hue contribution depends on the level of the value. While
the observers showed individual differences in the model that
best predicted their judgments, all showed a systematic effect of
hue and a small effect of value. Effects of chroma, if present, were
also systematically small.

Since the shape of the hue component does not depend on the
level of value and chroma for Observers 1, 3, and 4, it is possible
to display its shape independent of these dimensions. MLCM
provides only the relative contribution of each dimension, so the
warm/cool transition level is unknown. Panels in Fig. 3 show the
average estimated scales for each of the four observers, centered
vertically on the zero level (gray line). Note that the two curves
for Observer 2 indicate the slight dependence of hue on value
due to the interaction term. For all observers, the dependence
on hue is a U-shaped curve, suggesting that the warm/cool
dimension divides color space into two regions. These results
are based only on ordinal judgments between stimulus pairs,
but the individual curves and averages are consistent with curves
obtained by direct estimation [12,15].

B. Results of Two-Way MLCM (Hue and Value)

In the previous experiment, the results showed that chroma
made a negligible if any contribution to the warm/cool judg-
ments. In the two-way MLCM design, there were 20 levels of
hue and two levels of value with chroma fixed across conditions.
With two dimensions, the possible number of nested models
is reduced to five. The results of model selection for all observ-
ers, using the AIC criterion, are presented in Table 2 with the

Table 2. AIC Values of All Observers for Each of the

Five Models from the Two-Way MLCM Procedure

Model Obs. 5 Obs. 6 Obs. 7 Obs. 8

Null 1081.0 1064.1 839.9 1080.4
V 1014.0 991.4 766.2 1017.5
H 535.4 947.5 911.0 492.9
H + V 361.0 834.1 423.7 288.8
H * V 367.8 740.9 344.5 297.4

minimal AIC values in bold. Data indicate that the additive
model is best for Observers 5 and 8, while the full or saturated
model produces the lowest AIC value for Observers 6 and 7.

Scales estimated from the MLCM procedure are displayed
in Fig. 3, using the same format as the previous figures. For
Observers 6 and 7, the curves estimated for the lower value are
centered vertically on the zero level (gray line) as in the three-way
MLCM , because the ordinal judgments leave the vertical offset
undetermined. For Observers 5 and 8, no interaction with value
was necessary (additive model), and a single curve is shown in
each panel. The two curves for Observers 6 and 7 indicate the
effect of value on the shape of the hue curve. The results support
that observers agree generally on the assignment of warm/cool
judgments across hue while differing considerably on whether
and how value contributes to warm/cool appearance.

C. Results of Identification Task (Hue and Value)

MLCM permits assessing the contributions of color dimen-
sions to warm/cool judgments but only allows the relative
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Table 3. Results of the AIC for the Identification Task

Model Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5 Obs. 6 Obs. 7 Obs. 8 Obs. 9 Obs. 10 Obs. 11 Obs. 12

H 473.9 163.2 903.8 340.9 703.4 361.1 652.3 326.9 249.1 333.1 663.0 436.1
H + V 348.6 165.2 373.8 342.8 510.0 363.0 549.6 312.7 250.2 298.7 464.5 300.0
H * V 369.2 194.6 368.5 354.2 383.4 370.4 570.9 325.6 271.8 317.7 461.5 332.6

dependence of the hue curve shape to be determined. To cir-
cumvent this limitation, we employed an identification task in
which observers are presented with individual stimuli, varying
independently in hue and value, and are asked to classify each
stimulus as warm or cool. The decision rule for the identification
task can be modeled as

1HV =ψWC (φHV)+ ǫ,

where the decision variable,1HV, is a function of the perceptual
response, ψWC, that depends on the physical hue and value of
the stimulus, φHV, and is perturbed by Gaussian noise, ǫ, of
mean 0 and variance σ 2. Arbitrarily, we assume that when the
decision variable is greater than 0, the observer identifies the
stimulus as warm, otherwise cool. The perceptual response is
estimated by maximum likelihood using probit regression to
estimate the probability of choosing warm, where the physical
stimulus is expanded into separate columns of indicator vari-
ables in a model matrix for the main effects of the hue and value
levels and their interaction, depending on the model fit to the
data. Continuing with the logic of the previous experiments, we
used AIC for model selection. Three nested models were fitted
to each observer’s data. The first model depends on hue, the
second model is additive with respect to hue and value, and the
last model includes an interaction term.

The AIC values are shown in Table 3 with the lowest values
in bold. The model with lowest AIC for Observers 3, 5, and
11 included a hue and value interaction. AIC is the lowest for
the additive model for Observers 1, 7, 8, 10, and 12, while for
Observers 2, 4, 6, and 9, the hue contribution is independent of
the value. Thus, for 9 out of 12 observers, there is no interaction
of value with hue.

Figure 4 shows the comparison of the average hue response for
the model best fit by AIC. Here, Observers 3, 6, and 8 were left
out of the average because of the interaction of hue with value.

The results from the identification task provide absolute
estimates of the hue response. Maximal warm appearance falls
between 10R and 5YR and maximal cool over a relatively flat
region around 5 GB. The curve crosses zero at two hues, 5Y and
between 5P and 10P. Although the tendency is for reddish and
yellowish hues to be judged as warm and bluish and greenish
as cool, purplish (i.e., with a red component), yellowish, and
bluish hues are found in both warm and cool regions.

Figure 5 shows the estimated warm/cool responses as a func-
tion of hue for the three observers whose judgments were best
predicted by a model including a hue:value interaction. The
two curves in each panel indicate how the response curves were
affected by the value level of the stimuli. Not only do the curves
depend on the value level, but they suggest that the observers do
not classify colors along a warm/cool continuum in a manner
similar to the other nine observers.

Fig. 4. Average responses for the model best fits by AIC, excluding
Observers 3, 5, and 11 whose judgments revealed a hue:value inter-
action, so the hue curve shape depended on the level of value. Orange
points are those classified as warm and blue cool. The abscissa indicates
the hue values as displayed along the Munsell color system. Error bars
represent SEs.

4. DISCUSSION

Several previous studies have estimated warm/cool scales by
using subjective ratings [7,12,14–16]. Our results are consistent
with these in showing that, on average, hues between 5PB/10P
and 5Y were estimated to be warm and hues between 10Y and
10B/5P cool. As we have argued elsewhere [20], the ordinal
judgments involved using MLCM are generally easier for sub-
jects to perform and are likely to be less impacted by subjective
biases related to culture, linguistics, and internal representations
of how subjective magnitude translates to numerical values. In
addition, Vincent et al. [22] have demonstrated using simula-
tion that the scales obtained by MLCM accurately estimate the
shape of internal perceptual scales, while matching procedures
do not lead to a unique estimate.

An advantage of the MLCM procedure is that the influence
of and potential interactions between several dimensions on
warm/cool judgments can be estimated simultaneously. The
perceptual scales generated through the MLCM procedure,
however, are only unique up to an additive constant and a
multiplicative factor [19]. Thus, the MLCM procedure only
permits estimating the relative shape of the warm/cool curve
with respect to the dimensions probed. It is for this reason that
we also performed an identification task from which we could
also estimate the influence of multiple factors.

While we did not obtain warm/cool scales based on direct
estimation, it is reassuring to find that the scales that we obtained
based on identification judgments do largely correspond to
those obtained via subjective ratings by others [12,13,15]. Our
results also agree with the average results of Koenderink et al.
[17] who used ordinal judgments to assess warm/cool relations
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Fig. 5. Estimated warm/cool responses for each level of value (white filled circles: value = 5.4; black filled circles: value = 7.5) of the three observers
who displayed a hue:value interaction in the identification task.

for adjacent hues around a color circle. Importantly, the ordinal
judgments performed here involve comparing stimuli that
covary independently along several dimensions and do not
only involve stimulus pairs that are adjacent in color space. In
addition, we demonstrate feasible model selection methods
for analyzing MLCM paradigms more complex than two-way
experimental designs, and that avoid having to correct for
multiple testing [31].

While there were large individual differences between observ-
ers concerning what dimensions and their interactions best
predicted the observers’ judgments, we found that warm/cool
judgments largely were little affected by chroma level and do
depend on value for most observers. This contrasts with Katra
et al. [12] who found a slight dependence of subjective ratings
on saturation and Manalansan and Webster [15] whose results
were generally independent of luminance level. In contrast,
a recent study by Hammond et al. [16] displays a systematic
effect of luminance on average warm/cool estimates for lights of
different hue. A difference between our study and that of Katra
et al. [12] is that they used stimuli specified in NCS coordinates
and we specified our stimuli according to Munsell designations.
While both spaces are, in principle, based on perceptual color
spacing, they are not identical, and the discrepancies may have
arisen from differences in the two spaces. In our first experiment,
however, influences of chroma were slight even with variations
between value between hues, and the dependence on value
persisted for most subjects even when chroma was held constant
in experiments 2 and 3.

With respect to Manalansan and Webster [15], we note
that luminance is not the same as value. In their experiment,
observers were confronted with a single luminance level within a
run while in our experiments, observers had the opportunity to
compare or experience different levels of value during the same
run, which may have influenced their judgments differently.

We also note that the amplitude of the estimated warm/cool
response varied considerably across observers. The same trend
can be seen in the Katra et al. [12] study, in which about one-
quarter of the observers display a nearly flat warm/cool response.
Similar individual variations were found by Manalansan and
Webster (personal communication) and occur in the data from

individual observers of Hammond et al. [16] (available from
them upon request). Koenderink et al. [17] report that almost
half of their observers were unable to make coherent warm/cool
judgments. For those that could, their results showed a correla-
tion with a peak for warm responses at red or yellow and a peak
for cool responses around a cyan color. Their results indicated
that the warm/cool distinction is not systematically reflected in
observer responses, and there is uncertainty in assessing adjacent
hue steps.

Three of our observers in the identification experiment
behaved similarly (Fig. 5). Anecdotally, two of our observers
from experiment 3 (Observers 3 and 5) who displayed atypical
warm/cool responses were classified as having a color synes-
thesia, based on an online test battery ([32]) [33,34]. Our
sample is too small and the method post hoc to make a reliable
association here, but the suggestion warrants further study as
such interference in warm/cool judgments would imply a more
cognitive basis for the dimension. Perhaps as Briggs [35] ([36])
has argued, the warm/cool dimension, itself, corresponds to a
form of color/temperature synesthesia.
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