DR2
Christophe Heinrich received a PhD in Neuropharmacology from the University of Strasbourg (France), where he studied the role of BDNF and adult hippocampal neurogenesis in Mesial-Temporal Lobe Epilepsy. Afterwards, he joined the lab of Prof. Magdalena Götz at the Ludwig-Maximilian University of Munich (Germany) for his postdoctoral training. He focused on direct lineage reprogramming of glial cells into clinically-relevant induced neurons as a promising cell-based strategy for brain repair. He showed that astroglia from the cerebral cortex can be reprogrammed in vitro into functional, synapse-forming neurons of distinct phenotypes by forced expression of specific neurogenic transcription factors. He next showed that reactive glial cells within the injured adult cerebral cortex can also be instructed in vivo to generate induced neurons. After his postdoc, he moved back to France where he was recruited as assistant professor at CNRS (National Centre for Scientific Research). He was awarded in 2016 the Attraction Package from the Laboratory of Excellence (LabEx) CORTEX at the University of Lyon, where he has now established his own research group at the Stem Cell and Brain Research Institute (SBRI, INSERM). He became a Research Director at CNRS in 2024. His lab is currently exploring the functional impact of in vivo lineage reprogramming as a promising cell-replacement strategy in regenerative medicine to induce functional recovery in neurological disorders.
In mammals, acute invasive brain injury and chronic neurodegenerative diseases are characterized by acute or progressive death of neurons. The discovery that neurogenesis occurs throughout life in the adult brain of most mammals including humans raised hopes as a potential source for new neurons. However, in most brain areas, the vast majority of lost neurons are not replaced and the endogenous response of the adult human CNS fails to promote functional recovery. Of note, the majority of neurological diseases associated with neuronal death are also accompanied by a reactive gliosis characterized by an early activation/proliferation of microglia and NG2 glia followed by an astrocyte response (Dimou and Gotz, 2014; Robel et al., 2011).
During my postdoc in the lab of Prof. Magdalena Götz (Munich, Germany), we explored a very innovative strategy aiming at reprogramming reactive glial cells residing at the injury site into clinically relevant neurons, with the underlying rationale to recruit glia as an endogenous cellular source for brain repair, thus replacing lost neurons directly within the injured tissue. In addition we aimed at exploring an exciting question in the field of reprogramming whether glial cells can be directly reprogrammed into functional induced neurons (iNs).
First, we showed that astroglia from the postnatal mouse cerebral cortex can be directly reprogrammed in vitro to generate functional, synapse-forming iNs following forced expression of transcription factors (TFs) known to instruct neurogenesis in neural stem cells (Heinrich et al, 2010; Heinrich et al, 2011). Importantly, the neurotransmitter identity of astroglia-derived iNs can be controlled by selective expression of distinct TFs: Neurogenin2 converts astroglia into glutamatergic neurons, while Ascl1 or Dlx2 induces a fate switch toward a GABAergic phenotype. This was the first time that the generation of functional iNs could be achieved by direct conversion across cell lineages induced by a single neurogenic TF. Next, a major challenge was the translation of these findings obtained in the culture dish into the context of the adult mouse brain in vivo. We showed that NG2 glia proliferating in the cortex of adult mice in response to acute invasive injury can be converted into functional iNs in vivo by forced expression of Ascl1 and Sox2 (Heinrich et al, 2014). Together these proof-of-principle studies show that glia-to-neuron conversion can be achieved in vivo in the injured adult brain, opening new avenues for cell-based therapies in regenerative medicine and the use of endogenous glial cells for brain repair (Heinrich et al, 2015; Vignoles et al, 2019).
Based on these studies our current research aims now at further exploring whether glia-to-neuron reprogramming could emerge as a promising therapeutic tool. To this end, we aim at reprogramming glial cells residing within the injured brain -in pathological conditions- into functional iNs that:
Year | Authors | Title | Journal | PubMed | |
---|---|---|---|---|---|
2023 | Sarah Delcourte, Amel Bouloufa, Renaud Rovera, Cécile Bétry, Erika Abrial, Ouria Dkhissi-Benyahya, Christophe Heinrich, Guillaume Marcy, Olivier Raineteau , Nasser Haddjeri, Guillaume Lucas, Adeline Etiévant | Chemogenetic activation of prefrontal astroglia enhances recognition memory performance in rat | Biomed Pharmacother | ||
2022 | Studer F, Jarre G, Pouyatos B, Nemoz C, Brauer-Krisch E, Muzelle C, Serduc R, Heinrich C*, Depaulis A*, *equal participation | Aberrant neuronal connectivity in the cortex drives generation of seizures in rat Absence Epilepsy. | Brain | ||
2021 | Célia Lentini, Marie d'Orange, Nicolás Marichal, Marie-Madeleine Trottmann, Rory Vignoles, Louis Foucault, Charlotte Verrier, Céline Massera, Olivier Raineteau, Karl-Klaus Conzelmann, Sylvie Rival-Gervier, Antoine Depaulis, Benedikt Berninger, Christophe Heinrich | Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy | Cell Stem Cell | ||
2019 | Vignoles R, Lentini C, d'Orange M, Heinrich C | Direct Lineage Reprogramming for Brain Repair: Breakthroughs and Challenges | Trends Mol Med | ||
2018 | Jonckheere J, Deloulme JC, Dall'Igna G, Chauliac N, Pelluet A, Nguon AS, Lentini C, Brocard J, Denarier E, Brugière S, Couté Y, Heinrich C, Porcher C, Holtzmann J, Andrieux A, Suaud-Chagny MF, Gory-Fauré S | Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival | Brain Stimul | ||
2018 | Zweifel S, Marcy G, Lo Guidice Q, Li D, Heinrich C, Azim K, Raineteau O | HOPX Defines Heterogeneity of Postnatal Subventricular Zone Neural Stem Cells | Stem Cell Reports | ||
2016 | Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP, Schroeder T, Beckers J, Irmler M, Berndt C, Angeli JP, Conrad M, Berninger B, Götz M | Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming | Cell Stem Cell | ||
2015 | Heinrich C, Spagnoli FM, Berninger B | In vivo reprogramming for tissue repair | Nat Cell Biol | ||
2014 | Heinrich C, Bergami M, Gascón S, Lepier A, Viganò F, Dimou L, Sutor B, Berninger B, Götz M | Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex | Stem Cell Reports | ||
2011 | Pernot F, Heinrich C, Barbier L, Peinnequin A, Carpentier P, Dhote F, Baille V, Beaup C, Depaulis A, Dorandeu F | Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy | Epilepsia |