Direct reprogramming or cell-fate conversion across cell lineages emerges as an innovative approach toward cell-based therapies for regenerative medicine. In the CNS, direct lineage reprogramming of non-neuronal cells into clinically relevant neurons represents a highly innovative strategy to regenerate lost neurons for brain repair in several neurological disorders (for review see Heinrich et al., Nature Cell Biol, 2015 and Vignoles et al., Trends Mol Med, 2019). Along this line, we contributed important work by demonstrating that mouse astroglia can be directly reprogrammed in vitro to generate functional induced neurons (iNs) with different neurotransmitter identity (Heinrich et al., 2010; Heinrich et al., 2011). A major challenge was the translation of these findings obtained in the culture dish into the context of the adult brain in vivo. We showed that NG2 glia can be converted into iNs in the adult mouse cortex in vivo and following acute invasive injury (Heinrich et al., 2014).
Based on these studies our current research aims now at reprogramming glial cells residing within the injured brain –in pathological conditions– into functional iNs that:
Year | Authors | Title | Journal | PubMed | |
---|---|---|---|---|---|
2022 | Studer F, Jarre G, Pouyatos B, Nemoz C, Brauer-Krisch E, Muzelle C, Serduc R, Heinrich C*, Depaulis A*, *equal participation | Aberrant neuronal connectivity in the cortex drives generation of seizures in rat Absence Epilepsy. | Brain | ||
2021 | Célia Lentini, Marie d'Orange, Nicolás Marichal, Marie-Madeleine Trottmann, Rory Vignoles, Louis Foucault, Charlotte Verrier, Céline Massera, Olivier Raineteau, Karl-Klaus Conzelmann, Sylvie Rival-Gervier, Antoine Depaulis, Benedikt Berninger, Christophe Heinrich | Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy | Cell Stem Cell | ||
2019 | Vignoles R, Lentini C, d'Orange M, Heinrich C | Direct Lineage Reprogramming for Brain Repair: Breakthroughs and Challenges | Trends Mol Med | ||
2018 | Zweifel S, Marcy G, Lo Guidice Q, Li D, Heinrich C, Azim K, Raineteau O | HOPX Defines Heterogeneity of Postnatal Subventricular Zone Neural Stem Cells | Stem Cell Reports | ||
2016 | Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP, Schroeder T, Beckers J, Irmler M, Berndt C, Angeli JP, Conrad M, Berninger B, Götz M | Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming | Cell Stem Cell | ||
2015 | Heinrich C, Spagnoli FM, Berninger B | In vivo reprogramming for tissue repair | Nat Cell Biol | ||
2014 | Heinrich C, Bergami M, Gascón S, Lepier A, Viganò F, Dimou L, Sutor B, Berninger B, Götz M | Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex | Stem Cell Reports | ||
2011 | Heinrich C, Gascón S, Masserdotti G, Lepier A, Sanchez R, Simon-Ebert T, Schroeder T, Götz M, Berninger B | Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex | Nat Protoc | ||
2010 | Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, Götz M, Berninger B | Directing astroglia from the cerebral cortex into subtype specific functional neurons | PLoS Biol |